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Ori gi nal Ar tic le 

Introduction
Optical coherence tomography (OCT) provides physicians 

with non-invasive, rapid, and micron-level resolution images of 
the ocular tissues with near histological detail. It is widely used 
in diagnosis and follow-up of many retinal diseases, especially 
diabetic retinopathy.1 Diabetic macular edema (DME), which is 
the main cause of visual impairment in patients with diabetic 
retinopathy, can also be successfully detected with OCT.2 Various 
OCT-based DME classifications have been developed.3,4,5,6,7 
The most current of these classifications was reported by Arf 
et al.7 and defines three main types of DME with different 
clinical and morphological features: diffuse retinal edema (DRE), 
cystoid macular edema (CME), and cystoid macular degeneration 
(CMD).

OCT has become more preferred for the development of 
artificial intelligence (AI) models compared to other imaging 
methods due to its widespread usage and superiority in terms 
of acquiring multiple retinal images, providing high-resolution 
retinal imaging of pathological lesions undetectable by standard 
color fundus photography or clinical examination, and revealing 
various biomarkers that can provide information about disease 
prognosis.8,9 Although physicians’ interest in AI has increased 
over time, many still have reservations about AI because earlier 
systems required a certain level of coding skills, and highly 
specialized computing resources were needed.10

With the web-, cloud-, or personal computer-based code-
free AI platforms that have become available in recent years, 
physicians can develop their own AI models and perform 
classification and segmentation of medical images without 
the need for any coding expertise.11 Lobe (www.lobe.ai, Lobe 
Artificial Intelligence, Microsoft, Inc.) is a free desktop-based 
no-code machine learning (ML) application that classifies 
images by using pre-trained ResNet-50 V2 and MobileNet 
V2 convolutional neural networks (CNN).12 However, the 
effectiveness of Lobe in classifying ocular images is unknown. 
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The aim of this study was to evaluate the effectiveness of Lobe 
in the detection and classification of DME from cross-sectional 
spectral-domain (SD)-OCT scans.

Materials and Methods

Dataset Preparation and Image Labeling
Macular volumetric OCT scans of 336 patients with diabetic 

retinopathy and DME detected by Heidelberg Spectralis SD-OCT 
(Heidelberg Engineering, Inc., Heidelberg, Germany) between 
June 2019 and June 2021 were retrospectively analyzed. Cross-
sectional OCT scans were evaluated by two ophthalmologists 
(H.O., F.K.) according to DME type, image quality, and the 
presence of additional retinal pathology. The classification defined 
by Arf et al.7 was used to determine DME type. Accordingly, DRE 
was defined as DME characterized by increased retinal thickness 
and decreased intraretinal reflectivity, without a prominent round 
or oval intraretinal fluid space (Figure 1a). CME was defined as 
DME containing hyporeflective round or oval-shaped intraretinal 
cystoid areas bordered by hyperreflective septa (Figure 1b). CMD 
was defined as DME containing 600 µm and larger intraretinal 
cystoid spaces (Figure 1c). In the Arf et al.7 classification, the 
presence of serous macular detachment, vitreomacular interface 
disease, and hard exudate is designated as subgroups a, b, and c, 
respectively. Although there was no image subclassification based 
on the presence of these pathological lesions in this study, images 
with these findings were also included. Eyes with additional 
retinal pathology, such as age-related macular degeneration, 
glaucoma, and images with signal quality worse than 20 
(according to manufacturer’s signal quality index, range 0-40) 
were excluded.

As a result, a total of 695 fovea-centered cross-sectional 
SD-OCT images were included and 205 were classified as DRE, 
350 as CME, and 140 as CMD-type DME. In addition, 200 
fovea-centered SD-OCT scans from 200 healthy controls were 
included as “normal” (Figure 1d). All images were resized to 
512 x 512 pixels centered on the fovea using the crop function 
in Fiji (ImageJ, 1.53f; National Institute of Health, Bethesda, 
MD, USA). Metadata such as patient and device information 
were deleted from the images. Eighty percent of the images were 
parsed for training the ML model and 20% were allocated for 
testing.

This study has been approved by the Bezmialem Vakif 
University Faculty of Medicine Ethics Committee (decision no: 
2022/30, date: 22.02.2022).

Training the Deep Learning Model
The Lobe program was downloaded from the website https://

www.lobe.ai/ (Version 0.10.1130.5) free of charge and installed 
on a personal computer. After installation, a new project was 
created with four image labels named DRE, CMD, CME, and 
normal (Figure 2). To train the ML model, 164 DRE, 280 CME, 
and 112 CMD, and 160 normal images were imported into the 
appropriate image classes created in the application. 

No additional data augmentation techniques were 
performed, as the current application automatically generated 

five random variations of the image (random modifications 
included brightness, contrast, saturation, hue, rotation, zoom, 
and JPEG encoding noise) during training.12 The ResNet-50 V2 
CNN was used for model architecture by selecting the “optimize 
for accuracy” option in the Project Settings menu. After selecting 
the CNN, the training phase was restarted, followed by model 
optimization with the built-in “model optimization” function 
for better real-world performance.

Performance Evaluation and Statistical Analysis
Twenty percent of the dataset, consisting of 41 DRE, 28 

CMD, 70 CME, and 40 normal external test images allocated 
for testing, were imported one by one into the “Use” function 
of Lobe, and the model’s prediction for each image was recorded 
(Figure 3). Predictions were not manually marked as “correct” or 
“incorrect” during testing. 

Statistical analyses were performed using SPSS version 
22 software package (IBM Corp., Armonk, NY, USA). The 
sensitivity and specificity of the model in recognizing any type of 
DME (DRE or CME or CMD vs. normal image) and in detecting 
individual types of DME were determined. In addition, the area 
under the curve (AUC) was calculated with receiver operating 
characteristic (ROC) curve analysis to determine the effectiveness 
of the model in image classification.

Figure 1. Samples of retinal spectral-domain optical coherence tomography (SD-
OCT) scans from different classes included in the study. SD-OCT images of diabetic 
macular edema were classified into three types: diffuse retinal edema, defined as 
retinal thickening with reduced retinal hyperreflectivity and no cystoid spaces (a); 
cystoid macular edema, defined as retinal thickening with round or oval intraretinal 
spaces with a diameter less than 600 microns separated by hyperreflective septa 
(b); and cystoid macular degeneration, defined as intraretinal hyporeflective cystoid 
spaces with a diameter greater than 600 microns (c). SD-OCT images with no 
retinal pathology were classified as “normal” (d)
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Results

Internal validation automatically performed using 145 
internal images randomly selected from the imported images 
used for model training indicated that the developed model had 
prediction accuracy of 93.79% (98.74% of all imported images) 
in labeling. The effectiveness of the model was also evaluated 
with 41 DRE, 28 CMD, 70 CME, and 40 normal external test 
images. The predictions of the ML model in classifying DME 
types on external test images and the normalized confusion 
matrix based on the test data are shown in Figure 4. 

Sensitivity, specificity, and AUC values for detecting DME 
regardless of type (any type of DME vs. normal) were calculated 
as 99.28%, 100%, and 0.996, respectively. Sensitivity, specificity, 
and AUC values for each DME type were calculated as 87.80%, 
98.57%, and 0.936 for DRE; 96.43%, 99.29%, and 0.979 for 
CMD; and 95.71%, 95.41%, and 0.960 for CME, respectively. 
ROC curve analyses indicating the performance of the ML model 
in classifying DME types are shown in Figure 5. The presence 
of serous macular detachment, vitreomacular interface disease, 
and hard exudates in the training and testing datasets are also 
presented in Table 1.

Discussion

This study demonstrated that Lobe, a code-free ML 
application, could be used with high efficiency in the diagnosis 
and classification of DME from cross-sectional SD-OCT images. 
In addition, it showed that Lobe could provide satisfactory 
performance with a much smaller number of images compared 
to untrained deep learning (DL) models. This is an advantage of 
performing transfer learning using a pre-trained algorithm and 
automatically applying data augmentation to the dataset.

There are several studies in which ophthalmological images 
were classified by computer vision, a subfield of AI.8,9,13,14,15,16,17,18,19 
However, few studies have attempted to classify DME subtypes 
from OCT images. Alsaih et al.18 developed a multi-stage ML 
model to identify the presence of retinal thickening (DRE in 
the new classification), hard exudates, intraretinal cystoid spaces 
(CME in the new classification), and subretinal fluid (serous 
macular detachment in new classification) using the volumetric 
SD-OCT scans of 16 patients. The generic pipeline they 
developed included pre-processing, feature detection, feature 
representation, and classification. Although this model appears 
to have a sequential structure that can perform the current DME 
classification, it may not be practical for physicians without prior 
coding knowledge. In addition, it differs from our study in that 
all images featuring diabetic retinopathy were obtained from 
only 16 patients and classic ML algorithms were used instead of 
the CNN that forms the structure in Lobe.

A method similar to that performed in our study was recently 
used by Wu et al.19 The authors aimed to classify DRE, CMD, 
and serous macular detachment based on SD-OCT images using a 
VGG-16 CNN. Their model was developed with a large number 
of OCT images (12365 in total), yet shows little superiority over 
the DRE and CME classification in our study (AUC values 0.970 
vs. 0.936 for DRE and 0.997 vs. 0.960 for CME, respectively). 
A large amount of data is required, especially during the 
development of DL models, and therefore the number of OCT 
images included in our study may seem insufficient.20,21 Despite 
this, the DL model developed in our study resulted in acceptable 
accuracy with a relatively small number of images. The main 
reason for this may be the fact that Lobe utilizes transfer learning 
with pre-trained weights from the ImageNet, and automatically 
applies data augmentation techniques to the dataset. Thus, it 
was demonstrated that Lobe trained with a small number of 

Figure 2. The “New Project” user interface (named “DME classification” in the current project) in the Lobe program. Spectral-domain optical coherence tomography 
images were labeled as diffuse retinal edema (DRE), cystoid macular edema (CME), cystoid macular degeneration (CD), and normal according to the classes defined after 
being imported
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OCT images could be used effectively in DME classification and 
recognition, similar to DL-based models developed using large 
datasets. Furthermore, the built-in automatic data augmentation 
function in Lobe seems to be an added benefit, without the need 
for additional software/coding for data augmentation.

With increasing interest in AI and its widespread use in 
recent years, many companies have started to offer no-code ML 

platforms to serve users who do not have coding experience. The 
most detailed analysis of these platforms, which have different 
features and functions, was conducted recently by Korot et 
al.11 Their study examined the performance of various code-
free DL platforms in open-access datasets, as well as several 
features such as data security, usage fee, and model architecture. 
However, Lobe was not evaluated in that study. To the best 
of our knowledge, the clinical usage of Lobe has recently been 
evaluated in a few non-ophthalmological studies but not in the 
field of ophthalmology.22 The cost-free availability of Lobe is 
an advantage for physicians seeking to gain experience in AI 
with image classification. In addition, running and training DL 
models entirely on a personal device, i.e., not having to share data 
with the cloud or web services, seems to be a feature that can 
satisfy users in terms of data security. Another remarkable feature 
of Lobe is that after the model is developed, it can be improved 
even while in use. The user can confirm the prediction made by 
the model for an uploaded image as correct or incorrect during 
the test phase of the model. Upon selecting “correct” or “reject” 
in the “use” tool, the image is saved automatically with the label 
that the user deems appropriate, allowing the model to improve 
after each test image. 

Lobe includes two different CNN architectures and is 
selected automatically based on the size and complexity of the 
dataset, or manually based on user preference.12 In this study, 
we preferred the ResNet-50 V2 CNN structure because we 
targeted high accuracy from the model. On the other hand, 
the user can also choose to use the MobileNet V2 to get 

Figure 4. Normalized confusion matrix graph indicates the model had high 
accuracy in the prediction of diffuse retinal edema (DRE), cystoid macular edema 
(CME), cystoid macular degeneration (labeled CD in the project), and normal 
images

Figure 3. The accuracy of the developed model in predicting the labels was evaluated on external test images by the “Use” function. Model prediction on the sample 
external test images: (a) diffuse retinal edema (DRE), (b) cystoid macular edema (CME), (c) cystoid macular degeneration (labeled CD in the project), and (d) normal images
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faster predictions at the cost of lower accuracy.23,24 In addition, 
these developed models can be exported and used as a mobile 
application if desired. Although Lobe has many advantageous 
features and can successfully identify and classify DME in 
SD-OCT images, it lacks object detection or segmentation 
functions that would allow the identification of target structures 
in images, which limits its areas of application.

Study Limitations
The difference in the number of images between groups is a 

limitation of this study. However, in our retrospectively collected 
body of data, images with CME were frequently encountered, 
while images with CMD were less common. As reported by 
Arf et al.,7 the frequency of CMD was lower than other types 
of DME. In addition, a larger data sample in DL/ML models 
increases the accuracy of the models. However, imbalance (over- 
or under-sampling) in datasets is a problem that limits the 
accuracy and reliability of the models. A size ratio of the smallest 
(minority) class (group) to the largest (majority) class (group) 
between 20% and 40% is considered a mild imbalance.25 For 
this reason, datasets were created to attain high accuracy from the 
model without being imbalanced. Similar sample size differences 
between the groups are also seen in previous studies.26

Conclusion

Our study showed that Lobe, a free, no-code ML program, 
could be used effectively in DME detection and classification 
without the need for a large dataset by using pre-trained CNN 

architecture and automatic data augmentation. Advantageous 
features of the program are that it provides additional data 
security by being used on a personal device, the developed 
model can continue to be improved with every test image, and 
users have the option of selecting the CNN architecture. Thus, 
the Lobe program is an efficient and user-friendly option for 
physicians who do not have basic coding skills.
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